Department of Public Health Sciences

Metabolomics in the study of kidney diseases

Weiss RH, Kim K

Nature Reviews Nephrology. 2011. 8(1):22-33.

Metabolomics--the nontargeted measurement of all metabolites produced by the body--is beginning to show promise in both biomarker discovery and, in the form of pharmacometabolomics, in aiding the choice of therapy for patients with specific diseases. In its two basic forms (pattern recognition and metabolite identification), this developing field has been used to discover potential biomarkers in several renal diseases, including acute kidney injury (attributable to a variety of causes), autosomal dominant polycystic kidney disease and kidney cancer. NMR and gas chromatography or liquid chromatography, together with mass spectrometry, are generally used to separate and identify metabolites. Many hurdles need to be overcome in this field, such as achieving consistency in collection of biofluid samples, controlling for batch effects during the analysis and applying the most appropriate statistical analysis to extract the maximum amount of biological information from the data obtained. Pathway and network analyses have both been applied to metabolomic analysis, which vastly extends its clinical relevance and effects. In addition, pharmacometabolomics analyses, in which a metabolomic signature can be associated with a given therapeutic effect, are beginning to appear in the literature, which will lead to personalized therapies. Thus, metabolomics holds promise for early diagnosis, increased choice of therapy and the identification of new metabolic pathways that could potentially be targeted in kidney disease. PMID: 22025087 [PubMed - indexed for MEDLINE]



Close Window

UC Davis Health System is pleased to provide this information for general reference purposes only. It should not be considered as a substitute for professional medical advice. You are urged to consult with your health care provider for diagnosis of and treatment for any health-related condition. The information provided herein may not and should not be used for diagnosis and treatment.

Reproduction of material on this web site is hereby granted solely for personal use. No other use of this material is authorized without prior written approval of UC Regents.